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Abstract

A novel procedure for finding guessing attacks in security protocols is presented. The procedure
enjoys a simple and intuitive definition, and is easily implementable.

1 Introduction

Security protocols that use weak passwords (e.g. human chosen) can be subject to guessing attacks [GLMS93].
Guessing attacks exist in two flavours: online and offline. In online guessing attacks the intruder is al-
lowed to generate fake messages and to supply them to the honest agents, for instance for checking
whether a certain guess is correct. In offfine guessing attacks, on the other hand, the intruder first
gathers some knowledge K from the protocol execution, and then proceeds offline to perform a password
search. Let us immediately see an example, using the following (contrived) protocol:

l.a—=b : (a,na)

2.b—a : {nalpw

Here, na is a’s nonce, pab is a shared weak password between a and b, (-,-) denotes message pairing
and {na}pe is nonce na symmetrically encrypted with pab. After a protocol execution, the attacker
(who has eavesdropped all the traffic) has gathered a knowledge set K = {(a,na), {na}pq}. With this
knowledge, the intruder can mount an offline guessing attack on pab, by proceeding as follows:

(0) obtain na by splitting (a,na)
(1) REPEAT
(2) generate a guess p % using a dictionary
(3) let na’ be the result of decrypting {na},q, using p
(4) UNTIL na’ matches na

In step (4), the knowledge K allows the intruder to check whether a given guess of pab is correct. In
this case we say that pab is guessable wrt K. Intuitively, a password p is guessable in K if it is possible
to infer a term v (the verifier) from K U {p} in two different ways with the understanding that p plays
a crucial role in at least one of these ways of deriving v. In our example, the verifier was na, which is
derivable from {na},., using the guess and from (a, na) by projection.

Contributions. In this paper, we propose a simple procedure to find offline guessing attacks, given a
knowledge set K and a guess p. It is based on the idea of obtaining the minimal seed of a knowledge
K, as presented in [CDSV03]. Calculating the minimal seed before looking for guessing attacks allow us
to automatically obtain a knowledge that has no “false attacks” (ie. two different derivations that were
possible without guessing). Then, a procedure for looking for guessing attacks can be easily derived.



We have implemented the procedure in Prolog!; The prototype allowed us to test the security of several
protocols (including the examples discussed on Section 3.2).

Related Work. The first definition of guessing attacks in a formal setting is given by Lowe [Low(02].
The definition basically aims at capturing the notion of deriving some value in two ways.

However, Lowe’s definition is not constructive, and its proposed implementation is based on a CSP
model which is difficult to embed in other verification tools. Moreover, the procedure is tangled with
the protocol verification process.

Moreover, it is not clear how to implement it in a verification procedure: a straightforward imple-
mentation of Lowe’s definition would not terminate (in the Appendix, we report Lowe’s definition).

Recently, another approach to guessing attacks was presented in [Del03], were also the complexity of
guessing attacks was studied. It is worth mentioning that it is unclear whether the definition of guessing
attack of [Del03] is equivalent to Lowe’s. This work was subsequently extended in [DJ04], where an
algorithm for finding guessing attacks is described, for a finite number of participants.

One last approach was presented in [CMAFEOQ3] (partly authored by the present authors). There,
guessing attacks are defined by using a “masking function” o, that hides a possible verifier v with a
special mark, say “x”, before checking its derivability. Then, the checking of whether v is derivable
in two ways can be reduced to checking whether v and “x” are derivable. Although the approach is
intuitively sound, there are some cases in which the definition is not equivalent to Lowe’s.

The presented approach seems to be compatible with the one of Lowe [Low02], although this is not
formally proved. Indeed, it would be interesting to unify that work with Lowe’s, and also with our
setting.

2 Preliminaries

In this section we introduce the basic elements we need in the rest of the paper: the term algebra
representing the exchanged messages, and the intruder model, based upon the Dolev Yao model [DY83].

Term Algebra. The set of terms 7 contains a set constants C, representing the agent identities,
nonces (ie. random values) and keys. We use a special constant e € C to denote the intruder’s identity.
The set of terms is defined by the grammar defined in the left side of Table 1. This term algebra is quite
standard: we have pairing, public keys and (symmetric/asymmetric) encryption. Finally, we assume
that private keys are never part of messages, and so they are never leaked.

ti,ty = ¢ constant in C {ti,t2}  —pair {(t1,t2)}
pk(t1)  public key {(t,t2)} —yirst {t1}
(t17 "'2) pail" {(th t2)} —second {tQ}
h(ty) hash {t}  —hasn {R()}
{t1}+, symmetric encryption {t1,t2}  —sene {{t1}t,}

{t1};; asymmetric encryption | {{t1}s,,t2} —sdec {t1}
{tl, t2} —penc {{tl}g}
{tl} —intpenc {{tl ;{:(6)}
{{tl }1)71(6)} —intpdec {tl}

Table 1: Left: Grammar for terms. Right: Set of rules Rgyq.

Rules. Rules are used to represent the (standard) abilities of the attacker, in the style of Dolev-Yao.
Let A and B be two sets of terms, and let ¢ be a rule label, representing the name of the rule. A rule is
defined then as a triple A —, B. We work with the set of rules R4 given in the right side of Table 1.

As usual, the attacker is allowed to pair and split terms, hash, symmetrically encrypt with any
(possibly non-atomic) key and decrypt symmetrically if the key is known to the attacker. Public-key

!There is an online demo located at http://130.89.144.15/cgi-bin/ga/show.cgi.



encryption is modeled by allowing to encrypt with any key (penc) and also encrypt with the intruder’s
public key pk(e), which we assume the intruder always has. Then, rule intpdec models asymmetric
decryption of a term encrypted with the attacker’s public key. The attacker cannot decrypt any term
encrypted with a different public key than his own, since we assume that private keys are not leaked.
We now define a derivation relation over sets of terms.

Definition 1 We write T —, T" if there is an instance of a rule v = {t1,....tn} —¢ {8} € Rgta such
that {t1,....,tn} CT and T' =T U {s}.

In the above definition, 1 < n < 2 for Rgq. Note that the application of rules to sets is monotonic
in the sense that we never remove terms, and thus never “forget” information. A trace tr = (ry---ry,),
is a finite sequence of rule instances r;, ¢ € [1..n].

By iteratively applying rules from Rg;q to a given set, we obtain a derivation:

Definition 2 Let T and T be two sets of terms. We write T Lo if there is a finite path:
TO —ry Tl g e T, Tn

Such that T =Ty, T' =Ty, tr = (r1 - ... -1y), and for each i = [1..n], r; € Rgtq.

Note that T' g T for every T. We omit the trace and simply write 7' = T’ when we are not interested
on the specific trace. We write T’ X + as a shorthand for T 2 T for some T” s.t. ¢t € T'. Intuitively,

T £ ¢ means that the attacker is able to produce the term ¢ with trace tr from the knowledge T', using
the rules Rgy. Trace tr records the rules that were applied at each step of the derivation. Finally, we

write T' % t when there is no trace tr s.t. T e
Definition 3 Given set of terms T, C(T) denotes the minimum set containing {t € T | T = t}.

Given a finite set of terms T and a term ¢, it is easy to see that ¢t € C(T) is decidable.

3 Guessing Attacks

In this section we define our notion of guessing attacks. We first describe a procedure to obtain the
minimal seed of a given knowledge K, in a similar vein of the work of [CDSV03]. Intuitively, this
minimal seed of K will contain all the information contained in K but in compact form, with no
redundant information.

Definition 4 The minimal seed of T, min(T) is the minimum subset of C(T') that satisfies the following
properties for every t,t1,to,k € T and c € C:

cemin(T) it T=c
{(t1,t2)} & min(T)
h(t) € min(T) ff T At
{t}p emin(T) iff T Ak
{t1};, emin(T) ff T #Ht, VT A o
with to # pk(e)
fibe & min(T) (6)

Every constant that is derivable from T should also be derivable from min(T) (1). Also, no pairs
should be in min(T), since they can always be splitted (2). The hash of a term ¢ should only belong
to min(T) when t itself is not derivable from T' (3). Similarly, we have that {t}; € min(T) only when
the key k is not derivable from T (4). For public key ciphertexts with encrypting key different than the
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attacker’s pk(e), we require that {t;};; & min(T) when both ¢, and t, are derivable from 7" (5). Finally,
we do not allow ciphertexts encrypted with the attacker’s public key to reside in min(T), since it can
always be decrypted (6).

Even though this definition is not constructive, as shown in [CDSV03], we can obtain?:

Lemma 3.1 Let T be a finite set of terms. Then,

e min(T) is finite and computable.

e C(min(T)) =C(T)

Example 3.2 Let T = {k,{na}y, h((na,k))}. Then min(T) = {na,k}.

3.1 Procedure for finding guessing attacks

Now we are ready to give define a set ga(-), that contains the set of all verifiers corresponding to guessing
attacks over a knowledge set and a guess.
In the following definition, we use |+ to denote a disjoint union of sets.

Definition 5 Let T be a finite set of terms, then ga(T) is defined as the least set of terms satisfying:

ga(T) > h(t) if T =SW{h(t)} and S =t (rl)
ga(T) > ZfT = SL‘U{(tl,tQ)} and S U {tg} =11 (7”2)
ga(T) S to ZfT = Sh’J{(fl, tg)} and S U {tl} = 1o (T3)
ga(T) 2 ga(SU{ti,t2}) if T =SW{(t1,t2)} (r4)
ga(T) > t if T =SW{{t}r} and

S=kand S=t (rb)
ga(T) 2 ga(SU{t}) if T =SWH{{t}x} and S=EkNS At (r6)
ga(T) > {t1}y) if T = SW{{t1};, } and tz # pk(e) and

S =ty and S =t (7”7)
ga(T) > 1 if T'= SW{{t1},} and to = pk(e) and S =t (r8)
ga(T) 2 ga(SU{t1}) if T = SW{{t1};, } and ty = pk(e) and S # t1 (r9)

Let us give the intuition behind the first rule (r1): If the attacker can derive ¢ from S, then there
exists at least two “distinct ways” of deriving h(t) from the set Sg{h(t)}. Therefore, h(t) is a verifier
of a guess. Similarly, if there is a pair (t1,t2) € T, t1 is a verifier provided that from SU {t2} one derives
back ¢; (analogously for t3) (r2) and (r3). The pair is splitted in (r4). In (r5), we state that the plaintext
t is a verifier if {t}, € T and S allows one to derive both ¢t and k. In (rg), we add ¢ to T', since we can
decrypt thanks that T\ {t}, derives k. We proceed similarly for public key encrypted terms, in rules
(r7), (r8) and (r9).

We can actually compute the set ga(-):

Proposition 3.3 If T is finite, then ga(T) is computable.

Proof - sketch. To be done. Structure: define a procedure that builds ga(T), by implementing the above
rules. Checking T = t terminates. Note that for the three recursive cases (r4, 6 and r9) the standard
multiset norm based on the term-depth norm is well-founded and decreasing. The thesis follows then
from the fact that T is finite. Actually, we are not interested in computing the whole set ga(T'), but
only in checking if it contains at least one element; Thus, we can implement a simple procedure to find
a guessing attack (see the Appendix for the definition).

Another useful result is that when we combine min(-) and ga(-) we never obtain any verifiers. This will
prevent us from finding any “fake” guessing attack.

Lemma 3.4 Let T be a finite set of terms, then VT : ga(min(T)) = (.

2In fact, our setting is simpler than the one of [CDSV03], which deals with message terms from a Spi calculus grammar.



Now we are ready to define guessing attacks:

Definition 6 (gquessing attack) We say that there is a guessing attack over T with guess g if v : v €
ga(min(T) U{g}).

In fact, any valid v is a verifier for a guessing attack; the above definition only concerns about the
existence of one such verifier.

The above definition states that if v € ga(min(T)U{g}), then T'U{g} must allow a situation which
satisfies two things: First, no “fake” guessing attacks arise since anything that can be derived in two
ways arise thanks to the guess g, since from no verifier can appear from min(7T) alone, thanks to Lemma
3.4. Second, v is derivable in two ways.

3.2 Examples

In this section we illustrate our procedure on some example protocols.
The protocol of the Introduction:

a—b : (a,na)

b—a : {nalpew

The intruder’s knowledge at the end of the protocol is T = {{na}pw, (a,na)}. Here, min(T) =
{{na}pep, a,na}. Suppose that pab is weak. Then we can check if a guess of pab can be verified by
computing ga(min(T) U {pab}) = ga({{na}paw,a,na,pab}) = {na}. Since this set is non-empty, a guess
of pab can be verified.

Gong’s protocol. The previous protocol can be patched using a confounder ¢, to obtain the Gong
exchange [GLMS93]:

a—b : {(na,c)}pe)
b—a : {na}pw

If we assume that the intruder knows pk(b) initially, then the gathered knowledge is
T = {{(na,c)}prp), {na}pav, pk(b)}. Also here we have that min(T) = T. To see if a guess of pab can
be verified, we have to compute:

ga(min(T) U{pab}) = ga({{(na,c)}prw), {natpas, pk(b), pab})
= ga({{(na, ¢)}prw), na, pk(b), pab})
=0
Since this set is empty, a guess of pab is not verifiable, which confirms that using a confounder prevents
the attack.

A real key exchange protocol. The EKE protocol [BM92]. The protocol consists of the following
steps:

a—b : {pk(k)}pap ( )
b—a : {{T}ﬁc(k)}pab ( )
a—b : {na}, (EKE.3)
b—a : {(na,nd)}, ( )
a—b : {nb}, ( )

First, a generates a new private key k, and then it derives the public key pk(k). Then, a encrypts
pk(k) with the shared password pab and sends it to b (EKE.1). Then, b extracts pk(k), generates a fresh
session key r and encrypts it with pk(k). Then, b encrypts again the resulting message with pab and



sends it to a (EKE.2). The following three messages (EKE.7), ¢ = 3,4, 5, exchange nonces na and nb to
perform the “hand-shaking” necessary to defend against replay attacks.

Here, T' = {{pk(k)}pas, {{r} 1) tpav; {na}r, {(na,nb)},, {nb}.}. Also, min(T) = T. Let the guess
be pab. Then,

ga(min(T') U {pab}) ({{pk (k) }pav, {{r} k(i) bpavs {na}r, {(na, nb)}r, {nb}, pab})
(pk(k), {{r}ﬁc(k) }pab7 {na}T7 {(na’ nb)}Tv {nb}T’7pab})
= ga(pk(k),{r} iy, {natr, {(na,nb)},, {nb}, pab})

=0

ga
ga

Thus confirming that EKE is secure. However, depending on the implementation, r can be strong
or weak; the reader can check that if r is weak and thus guessable, we obtain an attack. Similarly, one
can also find an attack if we take pk(k) to be guessable. This can happen if e.g. a client uses the same
k in two sessions (for details see [BM92]).

4 Conclusions

In this paper we have proposed a simple procedure for finding guessing attacks.

We have implemented our procedure in Prolog; More specifically, we implemented a procedure to
calculate min(T") (Definition 8) based on the work of [CDSVO03], and the actual procedure to find
attacks (Definition 7). Preliminary benchmarks are promising, showing a high performance (for example,
verification of EKE as discussed in Section 3.2 takes 0.05s on a Pentium IV 1.8GHz with 256 MB of RAM).

Moreover, the procedure presented in this paper can in fact be “plugged-in” to any tool capable
of executing a security protocol, e.g. [CE02]. Briefly, we need to feed our procedure with the current
intruder knowledge at each step of the verification.

At this moment we are working at proving our definition equivalent to that of Lowe [Low02].
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A Appendix

A.1 A procedure to find guessing attacks

We define a procedure ga(-) that implements the set-theoretic definition of ga(-), given in Definition 5.

Definition 7 Procedure for searching guessing attacks of T. Let ga(T) be obtained as follows:

Procedure ga(7)

If (tl,tg) eT AT \ {(tl,tg)} @] {tz} = t1 then return(tl)

else if (t1,t2) € TAT\{(t1,t2)} U {t1} = t2 then return(ts)

else if (t1,t3) € T then return(ga(T U {t1,t2}))

else if {t1}4, € TAT\ {{f1}+,} = 1,12 then return(t;)

else if {tl}tg ceT AT \ {{tl}tz} =t AT \ {{tl}tg} 7£> t1 then
return(ga(T'\ {{t1}s,} Ut1))

else if {t1};; € T Nty =pk(e) AT\ {{t1};,;} = t1 then return(t;)

else if {t1};; € T Nt =pk(e) AT\ {{t1};, } # t1 then return(ga(T \ {{t1};, } Ut1))
else if {t1};; € T Nty #pk(e) NT\{{t1},} = t2 AT\ {{t1};,} = t1 then
return({t1};;)

else if h(t) € T AT\ {h(t)} =t then return(h(t))

else if return(l)

Note how the algorithm may generate different values, due to the non-deterministic choices in the
different membership tests.
We obtain a relation between the set ga(T) and the algorithm ga(T'):

Proposition A.1 (Soundness) . Let T be a finite set of terms. If ga(T) =v #L, then v € ga(T).

A.2 A procedure to calculate the minimal seed

We propose an alternative way of definining the minimum seed of a set of terms T to the one proposed
in Definition 8.



Definition 8 Let T be a finite set of terms. The minimizing rules are the following rewriting rules:

_—— {5 35T =Se{hO} A5 =t 1
T  otherwise
T otherwise

{Su{t} if3S: T =Sw{{th)}AS =k

T — : (3)
T otherwise

T S ifHSZTZSLﬂ{{t1}t—2>)}/\T:>t1/\T=>t2 withtg#pk(e) (4)
T  otherwise

_—— {Su{tl} if 38T =Sw{{t:},.)} )

T otherwise

Notice that these rules are non-deterministic in the existence choice.

We define minim(T) as the least fixed point obtained by starting from T and iteratively applying
the minimizing rewrite rules (1)-(5).

To prove that minim(T") is well-defined we have to proceed as follows: First, one has to show that
none of the rewrite rules affect the = relation (i.e. if T'= ¢ and T is rewritten into 7" then 77 =t as
well). This is immediate from the definition of =, rewriting never forgets information (7" = T” implies
that T'C T”). Then one can show that the rewrite system is terminating and confluent.

Proposition A.2 Let T be a finite set of terms. Then, minim(T) = min(T).

A.3 Lowe’s definition of Guessing attacks

We report on the definition of guessing attacks given by Lowe in [Low02], adapted to our setting. We
first need the definition of the undo relation over Rgq:

{t1,t2} —pair {(t1,12)} undo {(t1,12)} = firse {t1}
{t17t2} —pair {<t17t2)} undo {(tla t2)} —second {t2}
{(t1,2)} = first {t1} undo {t1,ta} —pair {(t1,%2)}
{(t17t2)} —second {t2} ’U//LdO {tla t2} _>pair {(tlth)}
{tlatQ} —senc {{tl}tg} undo {{tl}t27t2} —sdec {tl}
Ht1}esrta} —sdec {t1} undo

{t17t2} —senc {{tl}tz}

{tl} —intpenc {{tl};];(e)} undo {{tl};];(e)} —intpdec {tl}
Htrd ey} —intpdec {t1} undo {t1} —intpene {{t1} 1)}

Now, Lowe’s guessing attacks can be defined:

Definition 9 There is a Lowe guessing attack over T with verifier v of guess g, if there exists trace tr,
sets T1, S, S’, and labels €, ¢ s.t.:

1. TU{g} E 1.

S —¢ {v} etr.

AT T =Ty and S C Ty

S' —p {v} etr, (S,£) # (S, 0) orveTU{g}.

S —¢ {v} and 8" — 4 {v} do not undo any rule in tr.
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